Skip to main content

How to develop Fabric chaincodes with AI

This comprehensive guide covers how to configure and use AI providers within ChainLaunch Pro for developing Fabric chaincodes. You'll learn how to set up AI providers, configure models, and use the platform's AI-powered development tools to generate chaincode code, test and debug your chaincode, and deploy it to your Fabric network.

Video Tutorial

This video provides a step-by-step walkthrough of how to develop Fabric chaincodes using AI:

Overview

ChainLaunch Pro includes an intelligent AI-powered coding assistant that supports multiple AI providers (OpenAI and Claude). The system is designed with a pluggable architecture allowing developers to configure and switch between different AI providers seamlessly for Fabric chaincode development.

Configuration

Environment Variables

Set the following environment variables based on your preferred AI provider:

Note: Model availability may vary by region and API access level. Ensure your API key has access to the models you intend to use.

# For OpenAI
export OPENAI_API_KEY="your_openai_api_key_here"

# For Claude/Anthropic
export ANTHROPIC_API_KEY="your_anthropic_api_key_here"

Command Line Flags

When starting the serve command, configure AI providers using these flags:

# Basic OpenAI configuration
chainlaunch serve --ai-provider openai --ai-model gpt-4o

# OpenAI GPT-4.1 models
chainlaunch serve --ai-provider openai --ai-model gpt-4.1
chainlaunch serve --ai-provider openai --ai-model gpt-4.1-mini
chainlaunch serve --ai-provider openai --ai-model gpt-4.1-nano

# Basic Claude configuration
chainlaunch serve --ai-provider anthropic --ai-model claude-4-sonnet-20240229

# Claude 4 models
chainlaunch serve --ai-provider claude --ai-model claude-4-opus-20240229
chainlaunch serve --ai-provider claude --ai-model claude-4-haiku-20240307

# Legacy Claude 3 models
chainlaunch serve --ai-provider claude --ai-model claude-3-opus-20240229

# Explicit API key configuration (overrides environment variables)
chainlaunch serve --ai-provider openai --ai-model gpt-4o --openai-key "your_key_here"
chainlaunch serve --ai-provider anthropic --ai-model claude-4-sonnet-20240229 --anthropic-key "your_key_here"

Supported Models

OpenAI Models

  • gpt-4o (recommended)
  • gpt-4o-mini
  • gpt-4-turbo
  • gpt-4.1 (latest)
  • gpt-4.1-mini (fast and efficient)
  • gpt-4.1-nano (lightweight)
  • gpt-3.5-turbo

Claude Models

  • claude-4-opus-20240229 (most capable)
  • claude-4-sonnet-20240229 (balanced)
  • claude-4-haiku-20240307 (fastest)
  • claude-3-opus-20240229 (legacy)
  • claude-3-sonnet-20240229 (legacy)
  • claude-3-haiku-20240307 (legacy)

Model Selection Recommendations for Fabric Development

For Chaincode Development Tasks

  • Complex chaincode generation: gpt-4.1 or claude-4-opus-20240229
  • Code review and refactoring: gpt-4o or claude-4-sonnet-20240229
  • Quick prototyping: gpt-4.1-mini or claude-4-haiku-20240307
  • Lightweight tasks: gpt-4.1-nano or claude-4-haiku-20240307

Performance Considerations

  • Speed: gpt-4.1-nano and claude-4-haiku-20240307 are fastest
  • Cost: gpt-4.1-mini and claude-4-haiku-20240307 are most cost-effective
  • Capability: gpt-4.1 and claude-4-opus-20240229 offer highest quality
  • Balance: gpt-4o and claude-4-sonnet-20240229 provide good performance/cost ratio

Model Capabilities and Token Limits

OpenAI Models

ModelMax TokensBest ForSpeed
gpt-4.1128KComplex reasoning, code generationMedium
gpt-4.1-mini128KGeneral development tasksFast
gpt-4.1-nano128KSimple tasks, quick responsesFastest
gpt-4o128KBalanced performanceMedium
gpt-4o-mini128KCost-effective developmentFast
gpt-4-turbo128KLegacy high-performanceMedium
gpt-3.5-turbo4KSimple tasks, legacy supportFast

Claude Models

ModelMax TokensBest ForSpeed
claude-4-opus-20240229200KComplex reasoning, analysisMedium
claude-4-sonnet-20240229200KGeneral development tasksFast
claude-4-haiku-20240307200KQuick responses, simple tasksFastest
claude-3-opus-20240229200KLegacy complex tasksMedium
claude-3-sonnet-20240229100KLegacy balanced tasksFast
claude-3-haiku-20240307200KLegacy quick tasksFastest

Migration from Legacy Models

OpenAI Migration Path

  • From gpt-4-turbo: Migrate to gpt-4.1 for better performance
  • From gpt-3.5-turbo: Consider gpt-4.1-mini for improved capabilities
  • From gpt-4o: gpt-4.1 offers similar capabilities with potential improvements

Claude Migration Path

  • From claude-3-opus-20240229: Migrate to claude-4-opus-20240229 for latest features
  • From claude-3-sonnet-20240229: Upgrade to claude-4-sonnet-20240229 for better performance
  • From claude-3-haiku-20240307: Consider claude-4-haiku-20240307 for improved capabilities

Note: Legacy models remain supported for backward compatibility, but new deployments should use the latest models for optimal performance and features.

Built-in Tools for Fabric Development

The AI system includes several built-in tools specifically useful for Fabric chaincode development:

  • read_file - Read file contents (useful for examining existing chaincode)
  • write_file - Write content to files (create new chaincode files)
  • edit_file - Edit files using search/replace blocks (modify existing chaincode)
  • rewrite_file - Completely rewrite file contents (refactor chaincode)
  • run_terminal_cmd - Execute terminal commands (deploy chaincode, run tests)
  • file_exists - Check file existence (verify chaincode structure)

API Endpoints

When AI services are enabled, the following endpoints become available:

Protected Routes (require authentication)

  • /api/v1/ai/* - AI chat and interaction endpoints
  • /api/v1/files/* - File management endpoints
  • /api/v1/dirs/* - Directory management endpoints
  • /api/v1/projects/* - Project management endpoints

Using AI for Fabric Chaincode Development

Common AI-Assisted Tasks

  1. Chaincode Generation

    • Generate basic chaincode structure
    • Create CRUD operations
    • Implement business logic
    • Add validation and error handling
  2. Code Review and Refactoring

    • Review existing chaincode for best practices
    • Refactor code for better performance
    • Add comprehensive error handling
    • Improve code documentation
  3. Testing and Debugging

    • Generate unit tests for chaincode functions
    • Create integration test scenarios
    • Debug common Fabric chaincode issues
    • Optimize chaincode performance
  4. Deployment and Configuration

    • Generate deployment scripts
    • Create network configuration files
    • Set up monitoring and logging
    • Configure chaincode lifecycle management

Error Handling

Common Error Scenarios

  1. Missing API Keys

    OPENAI_API_KEY is not set and --openai-key not provided - AI services will not be available
  2. Invalid Provider

    Unknown AI provider: invalid_provider - AI services will not be available
  3. Token Limit Exceeded

    MaxTokensExceededError: Token count (15000) exceeds maximum (8000) for model gpt-4o

Error Response Format

{
"error": "error_code",
"message": "Human readable error message",
"details": {
"provider": "openai",
"model": "gpt-4o",
"token_count": 15000
}
}

Performance Considerations

Token Management

  • Monitor token usage to avoid exceeding model limits
  • Implement token counting for conversation history
  • Use appropriate models based on task complexity

Caching

  • Cache provider responses when appropriate
  • Implement request deduplication
  • Use streaming for long-running operations

Rate Limiting

  • Implement rate limiting per provider
  • Handle API rate limit responses gracefully
  • Use exponential backoff for retries

Security Considerations

API Key Management

  • Never commit API keys to version control
  • Use environment variables or secure key management
  • Rotate API keys regularly

Input Validation

  • Validate all user inputs before sending to AI providers
  • Sanitize code execution requests
  • Implement proper error handling

Data Privacy

  • Be mindful of code and data sent to external AI providers
  • Implement data retention policies
  • Consider on-premises AI solutions for sensitive codebases

Troubleshooting

Common Issues

  1. AI Services Not Available

    • Check that AI provider is specified with --ai-provider flag
    • Verify API keys are properly configured
    • Check server logs for initialization errors
  2. Poor AI Responses

    • Verify model selection is appropriate for the task
    • Consider upgrading to newer models (e.g., gpt-4.1 or claude-4-sonnet-20240229)
    • Check if project context is properly loaded
    • Ensure tool schemas are correctly configured
  3. Performance Issues

    • Monitor token usage and conversation length
    • Consider using smaller models for simple tasks
    • Implement request caching where appropriate

Debug Logging

Enable debug logging to troubleshoot AI integration:

chainlaunch serve --ai-provider openai --ai-model gpt-4o --log-level debug

Future Enhancements

  • Support for additional AI providers (Google Gemini, Cohere, etc.)
  • Fine-tuned models for specific Fabric development tasks
  • Multi-modal AI support (images, documents)
  • AI-powered code review and suggestion system
  • Integration with external knowledge bases
  • Fabric-specific AI templates and patterns

Support

For issues related to AI integration in Fabric development:

  1. Check the server logs for detailed error messages
  2. Verify API key configuration and permissions
  3. Test with different models to isolate issues
  4. Review token usage and conversation history
  5. Submit issues with detailed reproduction steps
  6. Consult the video tutorial above for step-by-step guidance